
Expressing WS Policies in OWL  
 

Bijan Parsia 
Maryland Information and 

Network Dynamics Laboratory 
University of Maryland 

College Park, MD 20742 
bparsia@isr.umd.edu

Vladimir Kolovski 
Dept. of Computer Science 

University of Maryland 
College Park, MD 20742 

kolovski@cs.umd.edu

Jim Hendler 
Maryland Information and 

Network Dynamics Laboratory 
University of Maryland 

College Park, MD 20742 
hendler@cs.umd.edu

 
 

 
 

ABSTRACT 
In this paper, we present two translations of the Web Service 
Policy Framework (WS-Policy) into OWL-DL. First, we 
provide an introduction to WS-Policy and we argue the 
benefits of using OWL and RDF to express web service 
policies. Then, we provide two translations from WS-Policy 
to OWL, one of them representing policies as instances, and 
the second one as classes. Finally, we provide a survey of 
existing web policy languages and a general idea of their 
expressivitiy. 

Categories and Subject Descriptors 
I.2.4 [Artificial Intelligence]: Knowledge Representations 
and Formalisms – Semantic Web, OWL, RDF, Web Service 
Policy. 

General Terms 
Performance, Design, Standardization, Languages. 

Keywords 
Web services, Policy languages, OWL, RDF, WS-Policy 

1. Introduction 
Web services interact with each other by exchanging SOAP 
messages. To provide for a robust development and 
operational environment, services are described using 
machine-readable metadata. This metadata serves several 
purposes, one of them being describing the capabilities and 
requirements of a service — often called the service policy. 
In recent years, there have been many different web service 
policy language proposals, all of them describing languages 
with varying degrees of expressivity and complexity. 
However, with most current proposals it is difficult to 
determine their expressivity and computational properties as 
most lack formal semantics. One characteristic of the 
proposed languages is that they involve policy assertions and 
combinations of assertions. For example, a policy might 
assert that a particular service requires some form of reliable 
messaging or security, or it may require both reliable 
messaging and security. Several industrial proposals (e.g., 
WS-Policy [13] and Features and Properties [2]) appear to 
restrict them to a kind of propositional logic with policy 
assertions being atomic propositions and the combinations 
being conjunction and disjunction. By mapping the policy 

language constructs into a logic (e.g., some variant of first 
order logic) we can acquire a clear semantics for the policy 
languages, as well as a good sense of the computational 
aspects of the languages. 
If we can map the policy languages into a standardized logic, 
then we can benefit from the tools and general expertise one 
expects to come with a reasonably popular standard. By 
mapping two policy languages into the same background 
formalism, we will be able to provide some measure of 
interoperability between policies written in distinct 
languages. If we are smart in our mapping, we should also be 
able use pre-existing reasoners for the standardized logic to 
do useful reasoning about policies. 
Our language of choice is the Web Ontology Language, 
OWL [4], and the Resource Description Framework (RDF 
[6]). Both RDF and OWL are strict subsets of first order 
logic, with the subspecies OWL-DL being a very expressive 
yet decidable subset. OWL-DL builds on the rich tradition of 
description logics where the tradeoff between computational 
complexity and logical expressivity has been precisely and 
extensively mapped out and practical, reasonably scalable 
reasoning algorithms and systems have been developed. 
In this paper, we have mapped one of the policy languages, 
WS-Policy, to OWL-DL. WS-Policy is a policy language 
being developed by IBM, Microsoft, BEA, and other major 
web services vendors and is generally considered to be the 
policy language with the most momentum. We have chosen 
two approaches: expressing policies as instances, and 
expressing them as classes. With the latter, we are able to use 
our OWL-DL reasoner, Pellet [8] as a policy engine with 
analysis services that go far beyond what is usually offered. 
In the next section we describe our mappings. 

2. Mappings 
Our implementation consists of two different translations, 
one being where the WS-Policy grammar is encoded in 
OWL and the other where we are trying to capture the 
formalism underlying the WS-Policy grammar. In the first 
case, individual policies are translated to OWL-DL 
instances, whereas in the second case they are translated into 
OWL-DL class expressions. This is no surprise as WS-Policy 
is pretty clearly intended to be a subset of propositional logic 
and OWL-DL is propositionally closed. 
 



2.1. Policies as Instances 
The first ontology is an attempt at designing an OWL 
ontology that accurately reflects the WS-Policy grammar 
which is originally expressed as an XML Schema. This 
translation essentially captures the syntax of WS-Policy, but 
not its semantics.  
As mentioned before, WS-Policy introduces a simple 
grammar for expressing policy assertions. These assertions 
allow developers to add metadata to service description at 
development time or at runtime.  Examples of development 
time policy would include a specification of which character 
encodings are supported, or which specifications, and which 
versions of those specifications are supported by the service.  
An example of runtime policy would include interruption in 
the availability of the Web service due to system 
maintenance. 
Assertions are the building block of a Web service policy 
and satisfying them usually results in a behavior that satisfies 
the conditions for the service endpoints to communicate. A 
policy assertion is supported by a requestor if and only if the 
requestor satisfies the requirement, or accommodates the 
capability, corresponding to the assertion. Policy assertions 
usually deal with domain-specific knowledge, and they can 
be grouped into policy alternative. An alternative is satisfied 
only if the requestor of the service satisfies all of the policy 
assertions contained in the alternative. Note that in our 

ontology policy assertions and alternatives are represented 
with separate OWL classes related with the 
containsAssertions property. Determining whether a policy 
alternative is supported is done automatically using the 
results of the policy assertions. 
A policy is supported by a requestor of a service if the 
requestor satisfies at least one of the alternatives in the 
policy. Once the policy alternatives have been evaluated, it 
can be automatically deduced whether a policy is supported 
by the requestor.  
There are two operators used to express relations between 
policies, alternatives and assertions: All and ExactlyOne. 
These operators are implemented as OWL classes 
OperatorAll and OperatorExactlyOne in our ontology. 
OperatorAll requires all the assertions to hold in order for the 
policy alternative to be satisfied. OperatorExactlyOne 
specifies that exactly one of the assertions has to hold in a 
collection of policy alternatives for the policy assertion to be 
satisfied. 
In order to illustrate our work, we present an OWL version 
of a policy requiring the web service to use X.509 
certificates or Kerberos tickets as security token types. 
 

 
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" 
         xmlns:wsp=”http://www.mindswap.org/~kolovski/ws-policy.owl#" 

 xmlns:wsse="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-
secext-1.0.xsd"> 

<wsp:Policy> 
  <wsp:constrainedBy> 
    <wsp:OperatonExactlyOne> 
      <wsp:constrainedBy> 
        <wsse:SecurityToken wsp:Preference="100"> 
          <wsp:Usage rdf:resource="http://www.w3.org/2004/08/20-ws-pol-pos/ns#Required"/> 
          <wsse:tokenType>wsse:Kerberosv5TGT</wsse:tokenType> 
        </wsse:SecurityToken> 
      </wsp:constrainedBy> 
      <wsp:constrainedBy> 
        <wsse:SecurityToken wsp:Preference="1"> 
          <wsp:Usage rdf:resource="http://www.w3.org/2004/08/20-ws-pol-pos/ns#Required"/> 
          <wsse:tokenType>wsse:X509v3</wsse:tokenType> 
        </wsse:SecurityToken> 
      </wsp:constrainedBy> 
    </wsp:OperatolExactlyOne> 
  </wsp:constrainedBy> 
</wsp:Policy> 
</rdf:RDF> 
 

Listing  1. RDF representation of a policy using a WS-Policy grammar expressed in OWL1. 
 

                                                                 
1 The ontology capturing the WS-Policy grammar is available at 
 http://mindswap.org/dav/ontologies/ws-policy_instance.owl
 

The approach described above gives us a clear way of expressing 
the syntax of WS-Policy in OWL.  This approach has its 

advantages, as described in Section 2. However, the previous 
ontology does not capture the semantics of WS-Policy, so it is 

http://mindswap.org/dav/ontologies/ws-policy_instance.owl


difficult, for example, to determine whether two policies are 
consistent with each other. The following translation does a better 
job of capturing the semantics of WS-Policy. 
 
 
 

2.2. Policies as Classes 
Our second translation maps the WS-Policy formalism directly in 
OWL. We accomplish that by translating the WS-Policy 
constructs from a normal form policy expression into OWL 
constructs. A normal form policy expression is a straightforward 
XML Infoset representation of a policy, enumerating each of its 
alternatives that in turn enumerate each of its assertions. 
Following is a schema outline for the normal form of a policy 
expression:  
 
<wsp: Policy…> 
   <wsp:ExactlyOne> 
      [ <wsp:All> [<Assertion…> … </Assertion>]* </wsp:All> ]* 
   </wsp:ExactlyOne> 
</wsp:Policy> 
 Listing 2.  Normal form of a policy expression 
Policy expressions can also be represented in more compact 
forms, using additional operators such as wsp:Optional, however 
as shown in [13] the policy expressions can all be expanded to 
normal form. Therefore we only provide a mapping of the 
constructs used in a normal form policy expression: 
wsp:ExactlyOne and wsp:All.  
First, we map policy assertions directly into OWL-DL atomic 
classes (which correspond to atomic propositions). Though WS-
Policy assertions often have some discernible substructure, it is 
not key to their logical status in WS-Policy. Or rather, that 
substructure is idiosyncratic to the assertion set, rather than being 
a feature of the background formalism. So a general WS-Policy 
engine must be adapted to deal with their structure, if it is to do 
so. The WS-Policy specification asserts: 

“Assertions indicate domain-specific (e.g., security, 
transactions) semantics and are expected to be defined 
in separate, domain-specific specifications.” 

It seems unfortunate that each domain-specific specification 
comes with its own domain specific syntax. If we are to capture 
the semantics of each assertion language, we must separately map 
each assertion language into OWL.  Our default of treating each 
assertion as a simple atomic proposition is reasonable for general 
policy manipulation, since a general purpose policy engine will 
work roughly the same way. 
Mapping wsp:All to an OWL construct is straightforward because 
wsp:All means that all of the policy assertions enclosed  by this 
operator have to be satisfied in order for communication to be 
initiated between the endpoints. Thus, it is a logical conjunction 
and can be represented as an intersection of OWL classes. Each of 
the members of the intersection is a policy assertion, and the 
resulting class expression (using the operator owl:intersectionOf) 
is a custom-made policy class that expresses the same semantics 
as the WS-Policy one. 

Handling wsp:ExactlyOne might be trickier, depending on the 
interpretation of the construct. There are two possible  
interpretations: 

a) wsp:ExactlyOne means that a policy is supported 
by a requester if and only if the requester supports 
at least one of the alternatives in the policy. In the 
previous version of WS-Policy there was a 
wsp:OneOrMore construct capturing this meaning. 
In such case, the wsp:ExactlyOne is an inclusive 
OR , and can be mapped using owl:unionOf. 

b) The other interpretation is that wsp:exactlyOne 
means that only one, not more,  of the alternatives 
should be supported in order for the requester to 
support the policy. This is supported by [13], 
where it’s stated that although policy alternatives 
are meant to be mutually exclusive, it cannot be 
decided in general whether or not more than one 
alternative can be supported at the same time. Our 
translation covers this more complicated case. 

 
Wsp:ExactlyOne can be translated in OWL in the following way: 
for n different policy assertions,  expressed as OWL classes 
themselves, wsp:ExactlyOne is the class expression consisting of 
the members of each separate policy class that do NOT also 
belong to another policy class. In OWL terms, it is the union of all 
of the classes with the complement of their pair-wise 
intersections. Because of the pair-wise intersections there is a 
quadratic increase in the size of the OWL construct that is used as 
a mapping for wsp:ExactlyOne. Following is a table summarizing 
both of the translations: 

 
Table 1. Mapping WS-Policy to OWL 

WS-Policy Construct OWL Expression 

 Wsp:All (policies A 
and B) 
 

intersectionOf ( A  B) 

Wsp:ExactlyOne 
(policies  A and B) 

intersectionOf( 
  complementOf (intersectionOf (A B)) 
  unionOf (A B) 
) 

 
In order to illustrate how the mapping of wsp:All and 
wsp:ExactlyOne  works, we present a sample policy ontology. 
The general WS-Policy Assertions are stored as OWL classes, for 
example there is a SecurityTokenType class with subclasses 
KerberosTicket, UsernameToken and X509Certificate. Other 
assertions are stored, too: Language, Messaging, SpecVersion and 
TextEncoding. Figure 1 illustrates the WS-Policy class hierarchy. 
 



 
      Figure 1. Sample Policy Ontology 
 
 

Having stored a part of WS-PolicyAssertions [14] as OWL 
classes, now it’s possible to develop our own custom policies. For 
example, say we wanted a policy such that the requestor supports 
Kerberos tickets and reliable messaging.  Those two conditions 
can be represented as two assertions in a policy alternative, 
implying that they can be mapped to an owl:intersectionOf. The 
corresponding OWL expression shown in Figure 2. 
 
 
 
 
 
 
 
 
 
 

 
Figure 2. Wsp:All representation in OWL 

 
For the wsp:ExactlyOne example, we consider a policy that 
expects the requestor to provide either a Kerberos ticker, or an 
X509 certificate, but not both.  In OWL, it would be represented 
by the class expression composed of the elements that are 
exclusive to  KerberosTicket and X509Certificate. Figure 3 
represents a serialization of the class expression in RDF/XML. 

 
 
 
 



 
Figure 3. Wsp:ExactlyOne representation in OWL 

 
 

2.3. Policy processing 

One of our arguments for expressing policies using OWL was the 
ability to reason about policy containment – whether the 
requirements for supporting one policy are a subset of the 
requirements for another. That would allow us to be more flexible 
in determining whether a particular requestor supports a policy, 
in the cases where the requestor supports a superset of the 
requirements established by the policy. 
 
 

 
      Figure 4. Example of policy containment 
 
In the previous figure, Retry-On-FailureUsernamePolicy  is an 
intersection of Retry-On-Failure and UsernameToken. However, 

since Retry-On-Failure is a subclass of Reliable, our OWL-DL 
reasoner [8] classifies Retry-On-FailureUsernamePolicy as a 
subclass of GeneralReliabilityUsernamePolicy , meaning that any 
user that supports the latter will also support the former. 
 

 
      Figure 5. Example of policy incoherence 
 
The above figure is an example of Swoop showing an incoherent 
policy. IncoherentPolicy selects two policy alternatives from an 
wsp:ExactlyOne, which, according to our current translation is 
forbidden. Note that Swoop displays an explanation of the 
incoherence, which can aid in repairing the policy. 



In general, we get the following inferences out of the box: 
1) policy inclusion ( if x meets policy A then it also meets 

policy B; a.k.a., A rdfs:subClassOf B); 
2) policy equivalence (A owl:equivalentTo B); 
3) policy incompatibility (if x meets policy A then it 

cannot meet policy B; a.k.a, A owl:disjointWith B); 
4) policy incoherence (nothing can meet policy A; a.k.a., 

A is unsatisfiable) 
5) policy conformance (x meets policy A; a.k.a, x rdf:type 

A) 
Some care must be taken given the open world semantics of 
OWL.  For example, an OWL reasoner does not assume that 
because it cannot prove that x conforms to policy A, that x does 
not conform to policy A. It is unclear what the WS-Policy authors 
intend, though a closed world assumption is not unlikely. 
However, even if there is a closed world assumption on WS-
Policies, we can handle at least some of those cases by adding 
explicit disjoint statements at translation time. 
One futher reasoning service supported by Pellet, and integrated 
with Swoop, is explanations for inconsistencies,[16] which can be 
used to help debug policy incompatibility, incoherence, and the 
like. As we add further explanation capability to our systems, this 
debugging power will grow. 
Thus we see that with a fairly simple mapping, we can use an off 
the shelf OWL reasoner as a policy engine and analysis tool, and 
an off the shelf OWL editor as a policy development and 
integration environment. OWL can also used to develop domain 
specific assertion languages (essentially, domain Ontologies) with 
a uniform syntax and well specified semantics. We can also 
experiment with extensions to WS-Policy, by using more 
expressive constructs from OWL at the policy language, as well 
as the assertion language, level. We can play with extensions 
before having to write a yet another processor for them. Of 
course, if it turns out that we really want to restrict ourselves to a 
very inexpressive subset, then we may still want to build specific 
reasoners and processors that are tuned for that sublanguage. But 
there again, our tools can help us. Pellet does expressivity 
analysis of ontologies, so can help determine what logic we are 
really using and the price of extensions. 
Furthermore, ontology development techniques can be useful for 
policy development as well. Most human generate ontology 
develop iteratively, with specializations added to the class tree 
over time. Similarly, we can build up our policies from more 
general ones. A general policy could be very restrictive, setting 
tough guidelines for all of a companies policies. 
Finally, given a similar style mapping for another policy language 
(say, Features and Properties, described in the next section) we 
can do policy analysis and integration across policy languages. 

3. Other Policy Languages 
In this section we provide a quick overview of the state-of-the-art 
in web service policy specification, by looking at the policy 
languages presented at [12]. To the best of our knowledge, they 
are sorted by increasing level of expressivity, even though lack of 
formal semantics and analysis hampered our effort to provide a 
fully correct listing. The list follows: 

3.1. The Platform for Privacy Preferences Project (P3P) [9] 
enables Web sites to express their privacy practices in a standard 

format that can be retrieved automatically and interpreted easily 
by user agents. P3P user agents allow users to be informed of site 
practices (in both machine- and human-readable formats) and to 
automate decision-making based on these practices when 
appropriate. According to [15], there exists a data-centric 
relational semantics for P3P in which a P3P policy is modeled as 
a relational database. This simple semantics allows us to express 
P3P using RDF. 

3.2. The Features and Properties architecture [2] originates 
from SOAP 1.2, and was integrated into WSDL 2.0 in order to 
support the SOAP-specific concepts. Afterwards the architecture 
was further expanded in order to allow Features to be more 
abstract. Simply put, a Feature identifies a piece of functionality, 
identified by a URI. An example of a Feature would be 
encryption. Properties are the parameters of a Feature, also 
identifiable by a URI. For an encryption feature, property might 
be the algorithm used, part of message encrypted, etc.  Features & 
Properties are similar to WS-Policy in terms of expressivity, with 
one exception – they lack operators for combining policy 
assertions. It is argued at [3] that adding a choose one/all 
operators (called combinators) will prove to be useful in 
expressing higher-level semantics combining multiple policies. 

3.2. WS-Policy [13] provides a general-purpose model and syntax 
to describe and communicate the policies of a Web service. It 
specifies a base set of constructs that can be used and extended by 
other Web service specifications to describe a broad range of 
service requirements and capabilities. WS-Policy introduces a 
simple and extensible grammar for expressing policies and a 
processing model to interpret them. The policy assertions are 
expressing using XML and the grammar itself is specified with 
XML Schema. 
By using OWL we increase the expressiveness of the WS-Policy 
representation and it will simplify the interaction between any 
new protocols on one hand, and WS-Policy and WSDL on the 
other hand. By using OWL/RDF we do not need to focus on the 
ways in which the policy is attached to the web service, instead 
we can concentrate on analyzing the policy itself. 
Also, WS-Policy uses an open content model on policy assertions 
to provide extensibility, and the usage of OWL and RDF can 
provide more expressiveness by way of subclass and subproperty 
constructs – re-using of derived policy assertions. 
[10] provides a comparison of XML and RDF in terms of 
expressing WS-Policies. It also provides arguments for usage of 
RDF to represent WS-Policy by describing how RDF meets 
document merging and extensibility goals described in the WS-
Policy specifications. To support this, the paper presents an RDF 
schema for representing web service policies upon which our 
policies as instances mapping was built.  

3.4. KaOS Policy and Domain Services [11] use ontology 
concepts encoded in OWL to build policies. These policies 
constrain allowable actions performed by actors which might be 
clients or agents. The KAoS Policy Service distinguishes between 
authorizations (i.e., constraints that permit or forbid some action) 
and obligations (i.e., constraints that require some action to be 
performed when a state- or event-based trigger occurs, or else 
serve to waive such a requirement). The applicability of the 
policy is defined by a class of situations which definition can 
contain components specifying required history, state and 
currently undertaken action. In the case of the obligation policy 
the obligated action can be annotated with different constraints 



restricting possibilities of its fulfillment. KAoS services have 
been extended to work equally well with both agent-based (e.g., 
CoABS Grid, Cougaar, SFX, Brahms) and traditional clients on a 
variety of general distributed computing platforms.  

3.5. WSPL  
WSPL[14] is being developed at Sun Microsystems. The Web 
Services Policy Language (WSPL) is suitable for specifying a 
wide range of policies, including authorization, quality-of-service, 
quality-of protection, reliable messaging, privacy, and 
application-specific service options. WSPL is of particular 
interest in several respects. It supports merging two policies, 
resulting in a single policy that satisfies the requirements of both, 
assuming such a policy exists. Policies can be based on 
comparisons other than equality, allowing policies to depend on 
fine-grained attributes such as time of day, cost, or network 
subnet address. By using standard data types and functions for 
expressing policy parameters, a standard policy engine can 
support any policy. The syntax is a strict subset of the OASIS 
eXtensible Access Control Markup Language (XACML [5], 
discussed below) Standard. WSPL has been implemented, and is 
under consideration as a standard policy language for use with 
web services. 

3.6. XACML provides a policy language which allows 
administrators to define the access control requirements for their 
application resources. The language and schema support include 
data types, functions, and combining logic which allow complex 
(or simple) rules to be defined. XACML also includes an access 
decision language used to represent the runtime request for a 
resource. When a policy is located which protects a resource, 
functions compare attributes in the request against attributes 
contained in the policy rules ultimately yielding a permit or deny 
decision. It is a powerful language, able to also express first order 
and higher order functions. 

3.7. Rei [7] is a policy specification language  based on a 
combination of OWL-Lite, logic-like variables and rules. It 
allows users to develop declarative policies over domain specific 
ontologies in RDF, DAML+OIL and OWL. Rei allows policies to 
be specified as constraints over allowable and obligated actions 
on resources in the environment. A distinguishing feature of Rei 
is that it includes specifications for speech acts for remote policy 
management and policy analysis specifications like what-if 
analysis and use-case management. As Rei is geared towards 
distributed environments, it also includes conflict resolution 
specifications like modality preferences or priority assignments 
between policies or between individual rules of a policy.  
 
Having produced a mapping for WS-Policy to OWL, we have 
shown that also Features and Properties and P3P can also  be 
mapped, since they are less expressive than WS-Policy. We plan 
to focus on the more expressive languages (WSPL, XACML,  
Rei) in the future, to determine how much of them can be mapped 
into OWL, or whether we must move to a more expressive 
language (like SWRL), or out of first order logic altogether. We 
believe that translation considerations for existing and used policy 
languages should be a factor in future extensions to OWL. 

4. Conclusion 
We have presented a translation of the base formalism of WS-
Policy into OWL-DL and described how those translations can be 
used for policy analysis, processing, and development. If our 

translation is correct, we have provided a formal semantics for 
WS-Policy. At worst, we have exposed some of the assumptions 
and ambiguities about the current specification. 
We have demonstrated that an OWL-DL reasoner provides useful 
services for policy analysis, including policy containment, 
incompatibility, conformance, and incoherence. We expect that 
having such services available will raise the bar for policy engines 
overall. 
In our future work, we intend to provide a standard mapping of all 
the current WS-Policy assertion languages with some structural 
fidelity. We also plan to attempt translations of at least parts of 
the other policy languages we described in order to get a more 
precise sense of their expressivity. If they cannot be mapped into 
OWL, we intend to isolate the incompatible expressivity in order 
to determine whether there are reasonable extensions to OWL that 
could accommodate it. 
Finally, we intend to further develop our tools as WS-Policy 
processing tools. We shall investigate the gap between general 
purpose tools like Pellet and Swoop and things tuned for WS-
Policy. For example, our explanation facility might do better for 
WS-Policies if it knew the characteristic structure of their 
translations. 
 

5. ACKNOWLEDGEMENTS 
This work was completed with funding from Fujitsu Laboratories 
of America- College Park, Lockheed Martin Advanced 
Technology Laboratory, NTT Corp., Kevric Corp., SAIC, 
National Science Foundation, National Geospatial-Intelligence 
Agency, DARPA, US Army Research Laboratory, NIST, and 
other DoD sources. 
 

6. REFERENCES 
 

[1] Anderson, A. H. An Introduction to the Web Services Policy 
Language. Sun MicroSystems. 
http://research.sun.com/projects/xacml/Policy2004.pdf 

[2] Daniels, G. Comparing Features / Properties and WS-Policy. 
W3C Workshop on Constraints and Capabilities for Web 
Servies. Redwood Shoes, CA, USA, Oct 12 -13, 2004. 

[3] Daniels, G. Features and Properties Musings. www-ws-
desc@w3.org mailing list, October 2003.  
http://lists.w3.org/Archives/Public/www-ws-
desc/2003Oct/0144.html 

[4] Dean, M. and Schreiber G. OWL Web Ontology Language. 
Reference W3C Recommendation, 
http://www.w3.org/tr/owl-ref/. Feb 2004.  

[5] Godik, S., and Moses,T., eds. OASIS eXtensible 
Access Control Markup Language (XACML) Version 
1.1. Oasis Committee Specification, http://www.oasis-
open.org/committees/download.php/4103/cs-xacml-
specification-1.1.doc. 24 July 2003. 

[6] Lassila, O. and Swick, R. Resource Description Framework 
(RDF) Model and Syntax Specification. W3C 
recommendations, WWW Consortium. Cambrigde,MA, 
USA. Feb 1999.  



[7] Kagal, L. et al. A policy Language for a Pervasive 
Computing Environment. In Collection, IEEE 4th 
International Workshop on Policies for Distributed Systems 
and Networks. June 2003.  

[8] Pellet – OWL-DL reasoner, 
http://www.mindswap.org/2003/pellet. 

[9] Platform for Privacy Preferences Project. 
http://www.w3.org/P3P/ 

[10] Prud’hommeaux, E. RDF for Web Service Assertions. W3C 
Workshop on Constraints and Capabilities for Web Services. 
Redwood Shores, CA, USA. Oct 12-13, 2004. 

[11] Uszokand, A. and Bradshaw, J. KAoS Policies for Web 
Services.   W3C Workshop on Constraints and Capabilities 
for Web Servies. Redwood Shoes, CA, USA, Oct 12 -13, 
2004. 

[12] W3C Workshop on Constraints and Capabilities for Web 
Services. Redwood Shores, CA, USA. Oct 12-13, 2004. 
http://www.w3.org/2004/06/ws-cc-cfp.html. 

[13] Web Services Policy Framework (WS-Policy).  http://www-
106.ibm.com/developerworks/library/specification/ws-
polfram/. 

[14] Web Services Policy Assertions Language. http://www-
106.ibm.com/developerworks/library/ws-polas/ 

[15] Yu, T., Li N., and Anton A.L. A formal semantics for P3P. 
ACM Workshop on Secure Web Services, October 29 2004, 
Fairfax VA, USA. 

[16] Parsia, B., Sirin. E., Kalyanpur, A. Debugging OWL 
Ontologies, In The 14th International World Wide Web 
Conference (WWW2005), Chiba, Japan, May 2005.

 
 
  


	Introduction
	Mappings
	2.3. Policy processing
	One of our arguments for expressing policies using OWL was t
	Other Policy Languages
	Conclusion
	ACKNOWLEDGEMENTS
	REFERENCES

