
Describing the P3P base data schema using OWL
Giles Hogben,

European Commission,
Joint Research Centre,

Via Enrico Fermi 1,
21020 VA, Ispra, Italy

+39 0332789187

giles.hogben@jrc.it

ABSTRACT

This paper describes use cases and requirements for a privacy
policy data schema. It describes problems with existing schemas
in relation to these requirements (P3P 1.0, P3P 1.1 and RDFS
schema for P3P). It proposes and motivates the use of an OWL
schema to describe the same semantics, which fulfils all the
requirements and may be used in a semantic web based privacy
and identity management context. It describes the advantages
which this gives to a policy evaluation engine based on such a
schema and describes some of the reasoning use cases addressed
in modelling the schema.

Modelling the schema using OWL appears simple at first sight,
because the entire schema can be constructed with OWL-Lite
predicates or using one custom predicate. However, the fact that
modal logical statements must be made about data types in the
schema (e.g. Organization x May Collect Data of type Y) makes
reasoning over the typing schema challenging. The paper also
looks at syntactic and semantic validation using the schema as
well as extensions and modifications to the vocabulary items
supported.

Categories and Subject Descriptors
D.3.3 [Programming Languages]: Language Constructs and
Features – abstract data types.

E.1 [Data Structures]: Distributed data structures, graphs and
networks.

General Terms
Standardization, Languages, Theory

Keywords
Policy engineering, P3P and policies, Semantic Web Groundings

This work was supported by the IST PRIME project; it
represents the view of the authors only.

1. Introduction
P3P [1] is a policy framework for describing web site privacy
practices using XML. The main body of a P3P policy is made up
of a set of statements about data collection practices. Each
statement refers to the practices claimed for a certain type of data,
described by "data elements" which are typed and validated
according to a special P3P data schema. The vast majority of
existing policies use the P3P Base Data Schema [2], the base

typing schema provided by P3P for this purpose. The exact
specification of this schema is outlined in [3] .

The P3P 1.0 base data schema is intended to provide a base set of
data types to cover the most common categories of personal data
about which P3P privacy policy statements might be made. The
schema also provides extensibility mechanisms for expressing
custom types. The fact that it is one of the only mechanisms to
offer this functionality for such a broad range of data types has
meant that the P3P data schema has also been adopted for several
other use-cases which were unforeseen by the P3P working group.

This paper shows how an OWL [4] based semantics can be used
in these use cases to fulfil many of the requirements that are
problematic for the P3P base data schema. The schema is
designed to fit into the policy architecture framework proposed in
"P3P Using the Semantic Web (OWL Ontology, RDF Policy and
RDQL Rules)" [5]
One important problem resolved by this paper is that P3P makes
statements about data types in the schema which use modal logic
(e.g. Organization x May Collect Data of type Y). This makes
reasoning over the typing schema challenging. The paper presents
a solution for achieving this using available OWL reasoning tools.

2. Use cases
Our motivation for creating an OWL data schema for privacy
policy languages was broader than the usage scenarios envisaged
for P3P and our schema is designed to cover scenarios envisaged
for both P3P and nascent enterprise privacy management
standards such as EPAL [6] and the technologies being developed
by the PRIME project [7], as well as to satisfy identity
management requirements such as those for automated form
filling and pseudonym management. In practice, the P3P data
schema has already been used beyond its design remit in many
projects [7],[8],[9] and it is therefore an urgent need to provide a
schema which can satisfy these broader requirements.

The schema we propose should allow the description of data types
in the following policy contexts:

a. Requesting data or credentials (the auto-form filling/Xforms
[10] scenario). The data typing schema is used to describe the
type of data to be inserted into a form field.

b. Describing data or credentials (metadata). The data typing
schema is used to describe data or credential instances.

c. Describing data practices (P3P type scenario) according to data
types. The data typing schema is used to describe types of data to
which certain data handling practices may be applied.

mailto:giles.hogben@jrc.it

d. Application of access control rules. The schema is used to
describe types of data to which groups of access control rules
should be applied. For example it should be able to describe the
type used in the natural language rule: "Do not give user emaill
addresses to third parties".

3. Requirements on a privacy and Identity
Management data schema
An analysis of the above use cases has led to the following
specific requirements:

1. Data types must describe data (i.e. the object is the
information), not properties of individuals. This is needed to
allow for types of data which are personal but do not
necessarily apply to individuals. It is also correct
semantically as data handling policies for example, make
statements about data and not about individuals and their
properties.

This implies that data types must be modelled as classes
rather than properties. So for example "email" means "data
of type email" rather than "the email property of user x".
This allows the model to be centred around statements about
data collection practices rather than statements about
individuals and their properties. It is more difficult to use
OWL to provide meta-information about properties than it is
about classes. The semantics of properties also breaks down
when it comes to data types such as "user". If user is a
property, what does it refer to? [11] breaks the schema down
into classes and instances so that "user" is a class, while
"prefix" is the value of a property, but this seems
unnecessarily complex as all the types in the P3P schema can
be described as classes of data.

2. The schema should distinguish between abstract (cannot be
instantiated) and concrete types. This gives the possibility to
use the schema for data and credential requests such as
automated form filling. It is not possible to use the P3P base
data schemas for automatic form requests because it does not
satisfy this requirement. But if types are designated abstract
and concrete status, then an application can ask for say "user,
online data" and a reasoning engine can drill down the
schema to dig out the concrete types "home page, email
address etc…

3. It should be easily possible within the semantics to apply
meta-data both to instances of data types and to the types
themselves. This requirement is derived from the need both
to describe data literals, and to make statements about
classes of data when describing data handling practices. This
is another strong reason to model data as classes and not as
properties, because it is much more natural to apply metadata
to classes rather than to properties.

4. The schema should be able to describe both literals (data
submissions) and classes of data.

5. The semantics of the OWL base data schema should not
conflict with any semantics which can be inferred from the
P3P Base Data Schema unless this can be shown to be
inconsistent with other requirements. The vocabulary used in
the P3P Base Data Schema semantics is based on a standards
process and thereby represents a consensus on the actual data
types required for describing most data. Although the syntax

and semantics is poorly expressed, the actual taxonomy
represented has considerable value.

6. The number of classes defined should be minimized. As with
any data model, redundancy is to be avoided and the
description of classes should be as normalized as possible.

7. The schema should provide validation functionality for
allowed data types and for the syntax of instances of a
designated type. If the schema is to be used for typing
instances, it is natural to provide syntactic validation
functionality.

8. The schema should use standardized, well-defined syntax. In
order to foster adoption.

9. The schema should have a well-defined semantics. This
makes it easy to apply the schema to new use cases.

4. Existing data schemas in relation to
requirements
4.1 P3P1.0 base data schema
Some literature exists outlining problems with the Base Data
Schema [11],[12]. [12] cites the over complexity of the syntax
and proposes an XML schema version of the syntax which has
now been incorporated into the P3P1.1 working draft [13].

In relation to the above requirements, the P3P1.0 data schema has
the following specific problems:

1. (Requirement 2) It does not distinguish between abstract and
instantiatable types.

2. (Requirement 7.) There is no provision for validation of
instance data.

3. (Requirement 8) The schema uses a highly complex and
obscure custom syntax which:

a. Does not use mechanisms available in XML syntax, which
are commonly used to model semantics. For example it does
not use nesting to indicate subclass or other class
relationships, but rather a convoluted custom syntax
involving string matching.

b. Is not well defined – the syntax used for defining the
relations between allowed data types can only be deduced by
examining the base data schema and examples. It does not
follow directly from the specification document. To take one
example out of several:

Data Structures are abstract types (for example "POSTAL")
which appear in the schema, but are never actually allowed
as types in data elements. They serve to group concrete
elements together. Nowhere in the specification document is
it stated that in a data schema, data structures refer to their
child elements by parsing the data element name, splitting it
by "." delimiters and then taking the first token!

Another example is that, according to [1], the categories of
the data schema (broad classes of data types) follow a
"bubble-up rule". The meaning of this phrase is not precisely
explained in the P3P specification, but by examining the base
data schema, one can deduce that it means data types which
can be expanded into further structures must inherit any
categories which are valid for those structures. In fact,

however, not all the categories quoted in the P3P base data
schema do follow a "bubble-up rule". For example, the
postal.name data structure is not (according to the official
specification [2]) assigned to the category demographic of its
child data structure, personname prefix.

Many of these problems were not picked up because the
syntax is so obscure.

4. (Requirement 9) The semantics is also not well defined.
There is a confusion between classes of data and properties
of individuals. For example, "user.employer" :"Name of
User's Employer" seems to model an object (the user) and its
properties. But "dynamic.cookies" "Use of HTTP Cookies"
models an abstract class of data (dynamic.cookies) and not
the "cookies" property of a "dynamic" object. Furthermore
the specification does not define whether syntax such as
"user.email" is meant to represent a set of user's email
addresses – or the intersection of the class of user data with
the class of email data. This has important implications when
trying to describe instance data.

Furthermore the semantics of the dot relationship between
the data types is not made clear. The specification says that
elements "include" other elements, implying that the relation
is equivalent to "subclass" but elements are also included by
several disjoint classes, making this incoherent. It is one of
the aims of this paper to make clear the exact semantics of
the base data schema in order to model it using OWL.

4.2 The P3P 1.1 Data Schema
The P3P 1.1 Data Schema (still in draft at the time of writing)
[13] addresses some of the problems outlined in 4.1

a. The P3P 1.1 Data Schema prescribes a standardized XML
syntax for describing the relationships between data
elements. Abstract "data structures" are abandoned, and
relationships are described simply by nesting tags within
each other. Custom schemas can be created by referencing
another XML schema.

b. A more precise semantics for the elements can also be
derived from the specification of this document. That " for an
element to be defined as an allowed child of element
<A> means if the policy states that it may collect data of
type <A>, then it can also be taken to state that it may also
collect data of type . "

The use of XML rather than description logic syntax is however
fundamentally limited because

a. XML semantics is only informal and is based on a
questionable interpretation of its syntax.

b. In practical terms, semantics expressed using a custom
interpretation of XML syntax such as in the P3P 1.1 Data
Schema cannot be interfaced with reasoning engines in the
way that RDF + OWL can. Much of the utility of the data
schema is lost because reasoning is proceduralized in
program code which then cannot be reused.

c. Since the structure of the schema is not well suited to
representation as a tree (as opposed to a directed graph), a
custom syntax has to be used to represent the structure.

4.3 The RDFS Schema for P3P
[14] is a previous attempt at producing a P3P data schema using
Description Logic syntax (RDFS). The RDF Schema for P3P
models data types as properties and describes a different class for
every possible combination of basic data types. While it does
provide a well-defined "p3p:extends" relation between data types,
it also describes all possible properties created by this extension
relation. This is highly redundant as the extension relation is then
contained in the syntax of the class names. It also has over 350
classes of data instead of less than 80 classes which are used to
compose these.
Furthermore, the definition of the extends relation as "Extends
another dataElementComponent" suggests a parallel with object
oriented design, which is not consistent with the semantics. (Does
a user's email extend the properties of a user?).
Finally, the RDFS schema's use of properties rather than classes
does not fulfil requirement 1.

5. Modelling Class Relationships in OWL
OWL provides a syntax which fulfils all the above requirements.
In using OWL, we implement the base data schema semantics in
the context of a semantic web enabled privacy architecture as
described in [5]. We chose OWL instead of other object oriented
modelling languages because it gives a standard XML based
syntax which provides the functionality required by the semantic
web based architecture in which the schema is used.

5.1 Reasoning use cases
We begin by describing a reasoning use case and then go on to
show how this can be implemented using an OWL-based
semantics which accurately reflects the intended semantics of the
P3P1.0 base data schema.
Identity management and access control systems typically need to
reason over policies or requests for broad data types which
correspond to specific data types in a store. Some important
reasoning use cases are as follows:
5.1.1. A typical statement of collection practices specifies that the
service may collect any data which is in both User and Name
classes (i.e. specializing Name as a User, not a Business, name)

The diagram re
deduce that this

User

Name

Prefix

SVFO SVFO

SVFO SVFO

Employer

Given

O
Figure 1. Classes related by SVF
presents this scenario. The reasoner is required to
 implies that the service may also collect the data

classes Given and Prefix (concrete types are filled in black,
inferences dotted lines).
5.1.2. A policy states that a company collects any data of type
User, whereas a preference rule refers to protecting Online data.
The reasoner needs to infer that if a service might collect User
data, it might also collect Online data.
5.1.3. A policy gives sensitivity ratings to data types which
determine their release by an identity management policy. The
reasoner selects the type with the maximum or minimum rating in
a given context.
Formally speaking, 5.1.1 and 5.1.2 require a system of modal
logic since it is describing possibilities. However, we show below
that it is possible to produce the required entailments using an
ordinary propositional logic system such as prolog.

5.2 Modelling the entailments using the
structure of the P3P 1.0 Data Schema
The P3P1.0 specification states: "P3P1.0 Data elements are
organized into a hierarchy based on the data element name as
specified by the data schema. A data element automatically
"includes" all of the data elements below it in the hierarchy. For
example, the data element representing "the user's name"
includes the data elements representing "the user's given name",
"the user's family name", and so on. Thus the data elements
user.name.given, user.name.family, and user.name.nickname are
all children of the data element user.name, which is in turn a
child of the data element user."
It is important to note that the exact meaning of "includes" here is
not specified. It appears to mean "subclasses" but, if one examines
the structure and semantics of the schema, this cannot be the case
because data elements such as personname are used as part of
disjoint classes such as User and Business.
Data schemas often need to reuse a common group of data
elements. P3P 1.0 data schemas support this through named data
structures. A data structure is a named, abstract definition of a
group of data elements. The name of the data structure itself (e.g.
postal) is never actually used in a data element. We quote the P3P
1.0 Specification's example:
<DATA-STRUCT name="date.ymd.year"
 short-description="Year" />
<DATA-STRUCT name="date.ymd.month"
 short-description="Month"/>
<DATA-STRUCT name="date.ymd.day"
 short-description="Day"/>
The structure of the P3P base data schema is, as [11] correctly
points out, not a forest, but a semi-lattice, as elements are used
repeatedly in different contexts. Figure 2 below is a Venn diagram
showing a fragment of the schema classes, which illustrates the
relation that holds between the data elements. The figure shows
the Classes User and ThirdParty, which both include some (>1)
values from Cert, Personname, Bdate and Gender.
All data elements in the P3P base data schema which are
"included" are in fact related as shown. That is if A "includes" (B
and C) then A contains some values from B and some values from
C and no other values unless otherwise stated (note that in fig 2,
User is shown outside of Cert, Personname etc… because it also
"includes" other data elements.)

5.3 OWL semantics
If we model all data elements as classes of data (as shown in
figure 2), then a single relationship, "SomeValuesFromOnly" can
be used to define the entire P3P base data schema using OWL.
In formal set theoretic notation, then, we wish to express a
relation R between three classes A, B and L (as shown in figure
2), where L is an RDF collection of classes:
If A <R> L then,

(
L
m

I
c
i
m
s
N
d
h
h
a
U
W
L

Thirdparty

GenderCert Bdate Personname

User

m

Lli∈∀ ,)(liAA ∩= U

and

A is the union of the intersection of A with each member, li, of
, and no intersection is null). Or alternatively, in terms of class
embers,

n
l
s

t

l

{};, ≠∩∈∀ liALli

))((, lAiiLl ∩∈∃∈∀
and
i
a
o

Figure 2: Fragment of schema classes as Venn Diagra

formally, this means that if A <R> L, where L is a list of
asses, then A is made up of some values from every class which
 a member of L and no other values. For example suppose L is
ade up of Login, Name, Bdate and Gender. Then suppose we
ate that (User <R> L), then User is made up of Login data,
ame data, Bdate data and Gender data. Note that the Venn
agram does not show all the classes in User and therefore User
s some values not in Login, Name, Bdate or Gender. Note
wever, that these classes are not subclasses of User data as they

so share members with other classes which are disjoint from
ser.
e found that the relation <R> can in fact be expressed in OWL-

ite using the following syntax:

laLliAaa ∉∈∀∈¬∃ ,,,

<owl:Class rdf:ID="A">
<owl:equivalentClass rdf:parseType="Collection">
<owl:Restriction>
<owl:onProperty rdf:resource="&rdf;type" />
<owl:someValuesFrom rdf:resource="#B" />
</owl:Restriction>
<owl:Restriction>
<owl:onProperty rdf:resource="&rdf;type" />
<owl:someValuesFrom rdf:resource="#C" />
</owl:Restriction>
</owl:equivalentClass>
</owl:Class>

This uses a restriction on the property "type" to say that some the
class A is made up of some values of type B and some values of
type B. The equivalent class predicate ensures that there are no
other values included. Using this syntax, in combination with
rules defining typical inferences to be made over the class graph
for various policy predicates, we found that all the necessary
deductions can be made. In order to increase reasoning efficiency,
we decided to abbreviate the above syntax to the equivalent
syntax:
<owl:Class rdf:ID="A">
 <customNS:SVFO rdf:parseType="Collection">

 <C/>
 </customNS:SVFO>

</owl:Class>

(SVFO stands for "Some Values from Only", which is an
abbreviation of the relations expressed in OWL-Lite above
applying to a list of objects)
These two syntaxes are equivalent and the second is only a
performance enhancement. We do not therefore specify the use of
one syntax preferably to the other if performance considerations
are addressed in some other way (e.g. introducing custom
procedural code into reasoning engines).
Furthermore, as in P3P1.1, we have also removed the "data
structure" names such as "postal" which are never referred to and
therefore complicate the schema unnecessarily. Structural
information can be included in labels if required for readability.
The whole schema hierarchy is then modelled using relations such
as:
<owl:Class rdf:ID="User">
 <customNS:SVFO rdf:parseType="Collection">
 <Personname/>
 <Cert/>
 ……
 </customNS:SVFO>

</owl:Class>

<owl:Class rdf:ID="Personname">
 <customNS:SVFO rdf:parseType="Collection">
 <Given/>
 <Prefix/>
 ……
 </customNS:SVFO>

</owl:Class>

Note that the categories of the base data schema can also be
modelled using this syntax, since they are just another class to
which some of the other data types stand in relation SVFO. The
syntax for integrating categories is more succinct and readable
than other syntaxes because it is only necessary to list the
categories and their allowed SVFO relations. The categories then
stand as an orthogonal system to the main hierarchy of types.
For example,

 <owl:Class rdf:about="#Political-data-category">

 <customNS:SVFO rdf:resource="#Cookies"/>

 <customNS:SVFO rdf:resource="#Miscdata"/>

 <rdfs:subClassOf rdf:resource="#Categories"/>

 </owl:Class>

6. Concrete and abstract types
Many applications need to know whether a data type can be
instantiated or not. For example if an application requests "User
data", this cannot be instantiated and the application must first
derive the concrete types inferred from the request. For this
reason, all concrete classes are designated as type Instantiatable.
If a type is not designated as instantiatable, then it is assumed to
be abstract.

7. Shortcut classes
In order to abbreviate the syntax of typing instance data, we
provide a set of shortcut classes for all possible instantiatable
classes. For example for data of type User, Name and Given, the
RDF syntax for typing an instance would be very verbose, so we
define the class
<owl:Class rdf:ID="User.Name.Given">
<rdf:type rdf:resource="#Instantiateable"/>
<owl:intersectionOf rdf:parseType="Collection">
<owl:Class rdf:about="#User"/>
<owl:Class rdf:about="#Name"/>
<owl:Class rdf:about="#Given"/>
</owl:intersectionOf>

</owl:Class>
These classes do not add anything to the semantics of the
ontology, but make it quicker and easier to type instance data and
to reason over the type ontology.

8. Referencing the schema from privacy
policies

There are 3 main use cases for referring to types from the schema
expressed using this syntax

1. Requesting a type – in a privacy negotiation between an
access control system and requester, the access control
system may require information or credentials. It therefore
needs to send hints as to the credentials required. For
example a web service may require a certain certificate in
order to allow access to a client. In this case, the service
must be able to provide hints to the client as to what is
needed to get authorization to use the service.

This can be expressed using the following syntax

1. Requesting typed data (Entity requests the data specifying the
user's name).

<Entity>
<requests-data-types>
<rdfs:Class>

<rdfs:subClassOf rdf:resource="User"/>
<rdfs:subClassOf rdf:resource="Name"/>

</rdfs:Class>
</requests-data-types>
</Entity>

(Or shorcut class syntax can also be used – see
Sec 7.)

2. Typing an instance (Entity Submits data of type User's Given
Name). This is expressed using the following syntax:

<Entity>
<hasData>
 <User.Name.Pseudonym>
 <rdf:value>Pseud1</rdf:value>
 </User.Name.Pseudonym>
</hasData>
</Entity>

3. Describing a practice carried out on a data type (Entity
collects any values which are of type User and Name i.e. the
class which is the intersection of both these classes)

<Entity>
<collectsAny rdf:parseType="Collection">
<rdfs:Class>
 <rdfs:subClassOf rdf:resource="User"/>
 <rdfs:subClassOf rdf:resource="Name"/>
</rdfs:Class>
</ collectsAny>
</ Entity>

The following points are worth noting in relation to this syntax:

• Each of these descriptions uses a different semantic to
describe the operation on the data, but the data types are
always referred to in terms of classes from the ontology.
That is using rdf:type or rdfs:subClassOf.

• In order to express a specific type, it is often necessary
to use multiple type declarations. For instance a name
may be a User name or a Business name so in the data
request description, it is declared as being both of type
User and Name to make clear this specialization.

• As discussed in section 7, the predicates "collectsAny"
and "requests-data-type" are in fact modal predicates
and effectively convert DataClassX into a prototypical
class representing all possible classes satisfying the
subClass properties. This somewhat contradicts the
formal semantics of OWL, however it will be shown
that the correct deductions can still be derived using
prolog style rules to extend the OWL semantics.

9. Inferencing over the schema
There are many possibilities for customized reasoning over such a
schema, as discussed in section 5.1. We discuss below how the
reasoning use case 5.1.1 (and implicitly also 5.1.2) may be
implemented. These cases are key to each of the policy use cases
described in section 2. This solution has been implemented and
tested using the Jena API [15].

9.1 Deriving types of data collected or
requested from broad types.
The relation "SVFO" (someValuesFromOnly) defined above
specifies a directed graph which has a tree structure. Figure 3
represents a typical statement about collection practices as
described in 5.1.1 (expanding the possible types of Name data).

The policy
both User a
a Business
temporary
deduce tha
service m
(concrete t
Generally
DataClassX
from a P3P
it is also tru
X mayColl
The prope
converts D
possible cl
correct ded
There are
this contex
1. The rea
which may
the SVFO
the examp
may collec
DataClassX
stand in rel
graph belo
Using a t
involves a
order to d
not User in
not have
subclass. T
functor.
2. The con
rule premi
subClass ?
premises, w
marker trip
This is a w
3. Finally,
true that if
from Z, the
some valu

Entity

CollectsAny
DataClassX

User

Name

Given Prefix

SVFO SVFO

SVFO SVFO

subClass

Employer

h
Figure 3: Data Handling Directed Grap
 states that the service may collect any data which is in
nd Name classes (i.e. specializing Name as a User, not
, name) – we give the elements of this class the
name DataClassX. The reasoner then is required to
t "Service may collect DataClassX" implies that the

ay also collect the data classes Given and Prefix
ypes are filled in black, inferences dotted lines).

speaking, if X mayCollect DataClassX where
 is some subClass of A (This is a typical statement
 policy), then if A <SVFO> B and B <SVFO> C then
e that:

ect DataClassX where DataClassX subClass of C
rty mayCollect is a modal predicate and effectively
ataClassX into a prototypical class representing all
asses satisfying the subClass properties. However the
uctions can still be derived using prolog style rules.
3 important problems that a reasoner must address in
t:
soner must return that DataClassX (the class of data
 be collected) is a subClass only of the lowest node in
hierarchy which DataClassX is already a subclass of. In
le then, the reasoner must not deduce that the service
t Employer data. Therefore it cannot simply return that
 is a subclass of – (all classes to which User and Name

ation SVFO to). I.e. the reasoner must only expand the
w Name but not below User.
ypical OWL reasoner, this is impossible because it
form of negation (or "Unsaid within the context"). In

etermine to expand the SVFO child nodes of Name and
 the above example, it must determine that Name does
any SVFO children of which DataX is already a
his can only be done using a forAll(not…) type rule

clusion (DataClassX subClass Given) invalidates any
ses searching for Unsaid((Name SVFO ?x), (DataX
x)). This means that the conclusions invalidate the
hich is nonmonotonic reasoning. This is solved using

les, which tell the reasoner to ignore conclusion triples.
orkaround which forces the reasoning to be monotonic.
transitivity does NOT hold for SVFO. It is not always
 X has some values from Y and Y has some values
n X has some values from Z. For example if (User has
es from Only Name and Employer) and (Name has

some values from only Given and Prefix), we cannot deduce that
(User has some values from Prefix), because the some values that
User has from Name may not be any of those that Name has from
Prefix.
What we need from such a property however is the following:
If and only if a service may collect any data of classes Given and
X, and Given is in the relation SVFO to class X, where X is
relation SVFO to class Y then the reasoner should also return that
the service might collect any data in class Y. (a kind of
conditional transitivity for SVFO).
All these requirements can be met within the limits of acceptable
performance using the proposed OWL ontology in combination
with prolog style rules. We used the Jena inference libraries to
derive these inferences on a sample policy. The following two
Jena rules correctly expand the types based as described above
(we have abbreviated the name space declaration for brevity). The
question mark syntax indicates universal quantification and all
triples are ANDed in the premises and conclusions:
Rule 1. The following complex rule ensures that the reasoner
deduces that A is a subclass of SVFO child nodes of any class, X
such that N requests-data-types A and A subClassOf X where
there is no class Y such that X <SVFO> Y (problems 1 and 2.)

[(?N ns:mayCollect ?A),

(?A rdfs:subClassOf ?X),

unSaidSpecial(?A,ns:someValuesFrom,rdf:type,?X)

->

[r3:(?A rdfs:subClassOf ?E)

(?X rdf:type ns:marker)

<- (?X ns:someValuesFrom ?E)]]

Rule 2. The following rule ensures that all SVFO children of a
class are returned as being of the same as the policy node, as long
as they have been previously marked using the second rule
(problem3).
[(?A rdfs:subClassOf ?D) <-

(?A rdfs:subClassOf ?B)

(?B rdf:type ns:marker)

(?B ns:someValuesFrom ?C)

(?C ns:someValuesFrom ?D)

]

The Rule builtin, unSaidSpecial provides the required negation
functor described above (problem 1) and is defined as follows:

unSaidSpecial(A,P,Q,X)

True iff for all(Y), (X,P,Y) there is no triple st (A,Q,Y)
Note that using the shortcut classes (see sec 7.), this reasoning
step can be performed much more simply for the case of finding
instantiatable types, however for the case of matching preferences
without the benefit of shortcut classes, this reasoning is still
necessary.

10. Validation using the OWL format
As well as reasoning functionality, most applications require
some validation functionality. This is of two kinds:

10.1 Synactic validation
This is available for concrete types such as "email". For example
the schema can specify that the concrete type email must contain
an @ sign – this can then be used to validate form entries for
example. This is achieved simply by specifying the rdfs:range of
instantiatable types described by the schema as being over an xsd
datatype.
e.g.

<rdfs:range rdf:resource="&xsd;dateTime"/>

This example shows a builtin data type. OWL does not specify a
mechanism for referencing user-defined xsd data types, but it
does not prohibit their usage. The OWL specification has this to
say about the question of user defined XML schema datatypes:
"Because there is no standard way to go from a URI reference to
an XML Schema datatype in an XML Schema, there is no
standard way to use user-defined XML Schema datatypes in OWL.
"
If we specify a mechanism for referring to custom data types in a
resource, we are therefore able to define a namespace containing
syntactic validation constraints on the concrete types for the OWL
data schema.
For example the following could be used to validate an email
address:
<rdfs:range rdf:resource="&PII-DS-
XML;emailAddress"/>

Can be specified to refer to the simpletype in the schema as
follows:
<simpleType name='emailAddress'>
 <restriction base='duration'>
 <pattern value='\w*@\w*\.\w*((\.\w*)*)?'/>
 </restriction>
</simpleType>

10.2 Semantic validation
A data type assignation breaks semantic validation rules if it
refers to a type of data which cannot exist. OWL is not a language
which is well adapted to making negation based statements of this
kind. However, we have added disjointness relations for classes
which should not be assigned simultaneously to data types (i.e.
they have no common values). For example if a policy describes a
class which is a subclass of both User and Business this should be
flagged as invalid. More sophisticated semantic validation
constraints may be added later. for example, a user's login can
have only one value. This may also involve the use of custom
rules within the reasoner module.

11. Changes to the P3P data schema
vocabulary
Based on input from other researchers, we have also altered the
available classes of the P3P data schema. For example, the
following alterations have been made.

1. Name is a single class rather than dividing it into user
name and business name. It is then specialized using
business and name classes.

2. We have added classes corresponding to fields in
electronic credentials,for example electronic identity
card, drivers' licence and passport fields.

3. We have taken into account recommendations on
identity document fields given in the recent ICPP study
on identity management systems [16].

4. The techniques used to model credential metadata have
also added other classes and predicates, which are out of
the scope of this paper. For example we have added
classes for describing proof methods for assertions
made by credentials which fit into the typing schema.

12. Conclusion
OWL can be used to satisfy the requirements on data schemas for
privacy and identity management policies within and beyond the
use case scenarios of P3P. Some modification of the rulebase for
reasoning over OWL is needed to deal with the modal "may
collect values from" and "requests values from" predicates
required by these scenarios, but this is possible using standard
semantic web libraries. OWL data schemas can also provide
required type validation functionality.

13. REFERENCES
[1] Platform for Privacy Preferences Specification, Cranor
et al. ,Platform for Privacy Preferences, W3C
Recommendation, http://www.w3.org/tr/p3p
[2] P3P Base data schema, part of W3C Recommendation on
P3P, http://www.w3.org/TR/P3P/base
[3] Cranor et al. P3P Base Data Schema specification,
http://www.w3.org/TR/P3P/#Data_Schemas
[4] Web Ontology Language, W3C recommendation, see
http://www.w3.org/TR/owl-semantics/
[5] Giles Hogben, P3P Using the Semantic Web (OWL Ontology,
RDF Policy and RDQL Rules), W3C Working Group Note 3
September 2000, http://www.w3.org/P3P/2004/040920_p3p-
sw.html

[6] Powers, C., Schunter, M., Enterprise Privacy
Authorization Language (EPAL 1.2), W3C Member
Submission 10 November 2003,

http://www.w3.org/Submission/EPAL/ (for references to
P3P data schema, see http://www.w3.org/2003/p3p-
ws/pp/ibm2.html)

[7] Privacy and Identity Management in Europe, European
Research Project, see http://www.prime-project.eu.org
[8] Claus,S. and Doring,S. P3P Based Negotiation of Personal
Data, Technische Universitat Dresden, Fakultat Informatik, D-
01062 Dresden, Germany
[9] Electronic Commerce Modeling Language (ECML),
http://www.faqs.org/ftp/rfc/pdf/rfc3505.txt.pdf
[10] Eds Dubinko et al, XForms 1.0, W3C Recommendation 14
October 2003, http://www.w3.org/TR/xforms/
[11] E. Damiani, S. De Capitani di Vimercati, C. Fugazza, and P.
Samarati: Semantics-aware Privacy and Access
Control:Motivation and Preliminary Results, Proceedings of 1st
Italian Semantic Web Workshop, 10th December 2004
[12] Giles Hogben , A technical analysis of problems with P3P
v1.0 and possible solutions, Position paper for "Future of P3P"
workshop, Dulles, Virginia, USA, 12-13 November 2002,
http://www.w3.org/2002/p3p-ws/pp/jrc.html
[13] Cranor, Dobbs, Egelman, Hogben et al., The Platform for
Privacy Preferences 1.1 (P3P1.1) Specification W3C Working
Draft 4 January 2005 http://www.w3.org/TR/2005/WD-P3P11-
20050104/
 [14] McBride, B., Wenning, R., Cranor, L., An An RDF Schema
for P3P, W3C Note 25 January 2002,
http://www.w3.org/TR/p3p-rdfschema
[15] Jena open source semantic web libraries,
http://jena.sourceforge.net/
[16] Independent Centre for Privacy Protection (ICPP) /
Unabhängiges Landeszentrum für Datenschutz (ULD),
Schleswig-Holstein and Studio Notarile Genghini (SNG), Identity
Management Systems (IMS): Identification and Comparison
Study.

http://www.w3.org/Submission/EPAL/
http://www.w3.org/2003/p3p-ws/pp/ibm2.html
http://www.w3.org/2003/p3p-ws/pp/ibm2.html
http://www.faqs.org/ftp/rfc/pdf/rfc3505.txt.pdf
http://www.w3.org/TR/p3p-rdfschema

	Introduction
	Use cases
	Requirements on a privacy and Identity Management data sche
	Existing data schemas in relation to requirements
	P3P1.0 base data schema
	The P3P 1.1 Data Schema
	The RDFS Schema for P3P

	Modelling Class Relationships in OWL
	Reasoning use cases
	Modelling the entailments using the structure of the P3P 1.0
	OWL semantics

	Concrete and abstract types
	Shortcut classes
	Referencing the schema from privacy policies
	Inferencing over the schema
	Deriving types of data collected or requested from broad typ

	Validation using the OWL format
	Synactic validation
	Semantic validation

	Changes to the P3P data schema vocabulary
	Conclusion
	REFERENCES

