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ABSTRACT
Privacy is becoming an increasingly important issue in many
data mining applications, particularly in the security and
defense area. This has triggered the development of many
privacy-preserving data mining techniques. A large frac-
tion of them uses randomized data distortion techniques to
mask the data for preserving the privacy. They attempt to
hide the sensitive data by randomly modifying the data val-
ues using additive noise. This paper questions the utility
of such randomized data distortion technique for preserv-
ing privacy in many cases and urges caution.It notes that
random objects (particularly random matrices) have “pre-
dictable” structures in the spectral domain and then offers a
random matrix-based spectral filtering technique to retrieve
original data from the data-set distorted by adding random
values. It extends our earlier work questioning the efficacy
of random perturbation techniques using additive noise for
privacy-preserving data mining in continuous valued domain
and presents new results in the discrete domain. It shows
that the growing collection of random perturbation-based
“privacy-preserving” data mining techniques may need a
careful scrutiny in order to prevent privacy breaches through
linear transformations. The paper also presents extensive
experimental results in order to support this claim.

∗This is an extension of the paper “Random Data Pertur-
bation Techniques and Privacy Preserving Data Mining”,
accepted for publication in the proceedings of the IEEE In-
ternational Conference on Data Mining, 2003. Therefore, it
contains some common material.
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1. INTRODUCTION
Many security and counter-terrorism-related decision sup-

port applications need data mining techniques for identi-
fying emerging behavior, link analysis, building predictive
models, and extracting social networks. They often deal
with multi-party databases/data-streams where the data are
privacy sensitive. Financial transactions, health-care records,
and network communication traffic are a few examples. Fig-
ure 1 depicts the data sources of a typical security screening
application where the data may be privacy sensitive. Min-
ing the data in such applications requires algorithms that
are sensitive to privacy issues.

There is a growing body of literature on data mining tech-
niques [1, 12, 15] that try to protect the data privacy with
varying degrees of success [14]. These algorithms try to ex-
tract the data patterns without directly accessing the orig-
inal data and attempt to guarantee that the mining pro-
cess does not get sufficient information to reconstruct the
original data. Some of these techniques are related to the
general framework of secure multi-party computation intro-
duced elsewhere [22].

This paper considers the problem of mining multi-party
privacy-sensitive data using random perturbation-based tech-
niques. It presents a negative result that may in fact help
the field in a positive way—leading toward a new class of
more robust privacy-preserving data mining algorithms. It
considers random additive perturbations used by many ex-
isting privacy-preserving data mining techniques (e.g. [1,
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Figure 1: Data sources for a typical security screen-
ing application. Many of these sources deal with
privacy sensitive data.

7, 8]) that try to preserve data privacy by adding random
noise while making sure that the underlying distribution is
still accurately preserved. It points out that in many cases,
the original data can be easily filtered out from the per-
turbed data using a spectral decomposition technique. This
paper argues that these additive random perturbation-based
techniques may compromise data privacy under linear trans-
formations of the perturbed data in many cases. This paper
extends our earlier work [14] and offers new results for dis-
crete data.

Section 2 briefly reviews the different types of data consid-
ered in this paper for privacy protection—continuous valued
data, discrete valued transaction data, and graph structured
data. This section also reviews some of the existing privacy-
preserving data mining techniques for these data types. Sec-
tion 3 presents an overview of the random matrix-based
filtering technique used in this paper for filtering out the
random additive noise from the perturbed data. Section
4 presents several experimental results. Finally, Section 5
concludes this paper.

2. PRIVACY PRESERVATION OF CONTIN-
UOUS AND DISCRETE DATA

Most security applications deal with heterogeneous data
from different sources. This section considers some of the
common data types that these applications usually deal with
and discusses some of the existing random perturbation-
based privacy-preserving data mining algorithms for each
of these domains.

It first considers continuous valued data and a random
data perturbation technique for privacy preservation of this
type of data. Next it considers discrete valued graph struc-
tured and transaction data for privacy-preserving applica-
tions. This paper argues that the privacy protection of these
randomized perturbation-based techniques may be compro-
mised by a spectral filtering technique discussed later in this
paper.

2.1 Continuous Valued Data
Continuous valued data are widely prevalent among differ-

ent data mining applications and security applications are
no exceptions. Several randomized techniques have been
proposed for privacy preserving data mining of continuous
data. Random additive perturbation [1] is one of them that
is directly relevant to the work presented in this paper. This
section presents a brief review of this technique. It works by

adding “randomly” generated noise from a given distribu-
tion to the values of sensitive attributes.The following sec-
tions discuss the data perturbation technique and the esti-
mation of density functions from the perturbed data set.

2.1.1 Perturbing the Data
The random additive perturbation method attempts to

preserve privacy of the data by modifying values of the sen-
sitive attributes using a randomized process. The authors of
[1] explore two possible approaches — Value-Class Member-
ship and Value Distortion — and emphasize the Value Dis-
tortion approach. In this approach, the owner of a dataset
returns a value ui + v, where ui is the original data, and v
is a random value drawn from a certain distribution. The n
original data values u1, u2, . . . , un are viewed as realizations
of n independent and identically distributed (i.i.d.) random
variables Ui, i = 1, 2, . . . , n, each with the same distribu-
tion as that of a random variable U . In order to perturb
the data, n independent samples v1, v2, . . . , vn, are drawn
from a distribution V . The owner of the data provides the
perturbed values u1 +v1, u2 +v2, . . . , un +vn and the cumu-
lative distribution function FV (r) of V . The reconstruction
problem is to estimate the distribution FU (x) of the original
data, from the perturbed data.

2.1.2 Estimation of Density Function from the Per-
turbed Dataset

Estimating the density function is a common problem in
data mining and security applications are not an exception.
The density information can be used for clustering, classi-
fication, and other related problems. Perturbed data using
additive noise allows estimating the underlying density func-
tion reasonably well.

The authors [1] suggest the following method to estimate
the distribution FU (u) of U , given n independent samples
wi = ui + vi, i = 1, 2, . . . , n and FV (v). Using Bayes’ rule,
the posterior density function f ′

U (u) of U , given that U+V =
w, can be written as

f ′
U (u) =

fV (w − u)fU (u)R∞
−∞ fV (w − z)fU (z)dz

,

where fU (.), fV (.) denote the probability density function
of U and V respectively. If we have n independent samples
ui + vi = wi, i = 1, 2, . . . , n, the corresponding posterior
density can be obtained by averaging:

f ′
U (u) =

1

n

nX

i=1

fV (wi − u)fU (u)R∞
−∞ fV (wi − z)fU (z)dz

. (1)

For sufficiently large number of samples n, we expect the
above density function to be close to the real density func-
tion fU (u). In practice, since the true density fU (u) is un-
known, we need to modify the right-hand side of Equation
1. The authors suggest an iterative procedure where at each
step j = 1, 2, . . . , the posterior density f j−1

U (u) estimated at
step j − 1 is used in the right-hand side of Equation 1. De-
tailed description of this approach can be found elsewhere
[1]. A related approach to estimate the density function and
a discussion on quantifying privacy can be found in [2]. The
following section considers discrete data types.

2.2 Discrete Valued Transaction Data
Association rule learning is a widely popular technique

for link analysis in data mining applications. This section
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considers market basket transaction data in Boolean repre-
sentations and a recently proposed randomized perturbation
technique for privacy preserving association rule learning.

Market basket data is usually a collection of transactions,
where each transaction contains some product ids that are
sold, and quantity sold [6]. The transactions can be repre-
sented in a tabular form, where each column represents one
product id, and each row represents one transaction. For
the sake of simplicity, let us consider transactions that only
keep track of whether or not an item was purchased, not
the quantity sold. In that case, we can represent a trans-
action using an �-dimensional Boolean string where � is the
maximum number of different items that are available to a
customer. The i-th bit will be set to 0 if the correspond-
ing item is not sold in that transaction; it will be set to 1
otherwise. Therefore, one can represent a collection of m
transactions using an m × � dimensional Boolean matrix.
Table 1 shows an example.

1 2 3 4 5

100 0 0 1 0 0
200 1 1 0 0 1
300 0 1 0 1 0
400 1 0 0 0 0

Table 1: Boolean matrix representation of market
basket transaction data.

Association rule learning techniques are frequently applied
for mining such transaction data. When the data is privacy
sensitive we must restrict the access to the raw data for min-
ing purposes. Randomized techniques have been proposed
elsewhere [7] that work by randomly adding and deleting
items from a transaction with a probability that depends on
the number of items sold in a transaction. In the Boolean
representation this is equivalent to flipping the bit values in
the binary string representing a transaction. Although this
bit-flipping probability varies one should be able to sim-
plify the scenario in most real-life applications. In most
market basket transaction data set the number of items
sold stays within a relatively narrow regime. For example,
even if a drug store has 10, 000 items in the inventory, most
customers are likely to buy only a small fraction of them.
Therefore, we may be able to divide the transaction data set
among a set of subsets where each of them contains all the
transactions that contain the same number of sold items
per transaction. In each of these subsets, the bit-flipping
probability remains constant across different transactions.
So the item addition/deletion-based technique with varying
bit-flipping probability can be reduced to a set of problems
for each of the subsets with constant bit-flipping probability.
Therefore, the fundamental privacy-preserving technique is
reduced to random perturbation of the Boolean data repre-
senting the transactions. The work presented in this paper
points out that such privacy of such Boolean data may not
be adequately preserved using random perturbation of the
bits.

2.3 Graph Structured Data
Data in the form of graph structures shows up in many

link analysis applications. Telephone communication net-
works, intelligence sources usually generate this types of
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Figure 2: Graph data for link analysis.

data. These applications usually involve analysis of weighted
directed or undirected graphs for detecting different charac-
teristics like social groups, outliers behavior, and instance
of target sub-graphs. Although the graphs themselves are
not in tabular forms, they can be represented in that form.
Adjacency matrix is one possible way to do that. For exam-
ple, consider the graph shown in Figure 2. Let us assume
that links C-E, F-E, and D-E are privacy sensitive. These
links may correspond to properties that deal with sensitive
features and therefore the exact link weights cannot be dis-
closed to the third party interested in mining the data.

C D E F

C 0 0 0.7 0
D 0 0 0.7 0
E 0.7 0 0 0.5
F 0 0 0.5 0

Table 2: The privacy sensitive links are represented
using adjacency matrix-based representation.

One possible solution to this problem is to perturb the
sensitive information in a secured fashion so that specific
underlying data patterns remain invariant but the data it-
self appears very different from its original form. This prob-
lem can be posed in the following abstract form. Given the
sensitive component of the graph shown in Table 2, find a
representation of the data that preserves both privacy and
the target types of data pattern.

When the graph is not weighted, the adjacency matrix
is a Boolean matrix. Adding or deleting a link is therefore
equivalent to flipping a bit value in the adjacency matrix.
This paper considers this simpler version of the problem. It
shows that the original graph structure can be accurately
estimated even after perturbing the adjacency matrix by
random noise (i.e. random arch addition and deletion). Al-
though this randomized perturbation-based technique ap-
pear to be a natural extension of the other random data
perturbation schemes, this may not offer sufficient protec-
tion from privacy breaches.
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3. BREACHING THE PRIVACY: A RANDOM
MATRIX-BASED FILTERING APPROACH

This section points out that although the data may look
apparently different after the random additive perturbation,
it is possible to extract the original data by using spectral
filtering techniques. Detailed description of the material dis-
cussed in this section can be found elsewhere [14] of which
this paper is an extension.

Consider an m × n data matrix U and a noise matrix
V with same dimensions. The random value perturbation
technique generates a modified (or perturbed) data matrix
Up = U + V . Our objective is to extract U from Up. Al-
though the noise matrix V may introduce seemingly signifi-
cant difference between U and Up, it may not be successful
in hiding the data. Random noise has well defined prob-
abilistic properties that may be used to identify the noise
component of the perturbed data matrix Up in an appropri-
ate representation. The rest of this section argues that the
spectral representation of the data allows us to do exactly
that.

Consider the covariance matrix of Up:

UT
p Up = (U + V )T (U + V )

= UT U + V T U + UT V + V T V. (2)

Note that when the signal vector (columns of U) and ran-
dom noise vector (columns of V ) are uncorrelated, we have
E[UT V ] = E[V T U ] = 0. This assumption is valid in prac-
tice since the noise V that is added to the data U is gener-
ated by a statistically independent process. If the number
of observations is sufficiently large, we have that UT V ≈ 0.
Equation 2 can now be simplified as follows:

UT
p Up = UT U + V T V (3)

Since the correlation matrices UT U , UT
p Up, and V T V are

symmetric and positive semi-definite, let

UT U = QuΛuQT
u , UT

p Up = QpΛpQT
p , and (4)

V T V = QvΛvQT
v , (5)

where Qu, Qp, Qv are orthogonal matrices whose column
vectors are eigenvectors of UT U , UT

p Up, V T V , respectively,
and Λu, Λp, Λv are diagonal matrices with the correspond-
ing eigenvalues on their diagonals.

It has been shown elsewhere [14] that for “reasonable”
signal-to-noise ratio,

Λp ≈ Λu + Λv. (6)

Suppose the signal covariance matrix has only a few dom-
inant eigenvalues, say λ1,(u) ≥ · · · ≥ λk,(u), with λi,(u) ≤ ε
for some small value ε and i = k + 1, . . . , n. This condition
is true for many real-world signals. Suppose λk,(u) > λ1,(v),
the largest eigenvalue of the noise covariance matrix. It is
then clear that we can separate the signal and noise eigen-
values Λu, Λv from the eigenvalues Λp of the observed data
by a simple thresholding at λ1,(v). Note that equation 6
is only an approximation. However, in practice, one can
design a filter based on this approximation to filter out [14]
the perturbation from the data. This filtering approach first
separates the signal eigenstates from those belonging to the
noisy eigenstates and then use the signal eigenstates to con-
struct an approximation of the original data by projecting

the perturbed data on to the subspace spanned by the signal
eigenvectors. In other words, Û = UpAuAu

T , where Au is
the matrix whose columns are the eigenvectors correspond-
ing to the signal eigenvalues.

It is obvious that the above theory can be extended to
discrete data and this paper makes an attempt to present
some results obtained by the authors in this regard.

4. RESULTS
This section presents several experimental results docu-

menting the performance of the spectral filtering technique
in reconstructing the continuous and discrete data.

4.1 Experiments with continuous data
We have performed experiments with artificial dataset

having specific trend in its value as well as real world dataset
containing random component. The results show that for
dataset with specific trend like one shown in Figure 3, due
to absence of any random component in actual data, Equa-
tion 6 holds closely, giving a close estimation of the actual
data. Extensive experimental results, including comparison
with other filtering techniques like moving average, Weiner
filter, presented elsewhere [14] also support the observation.

The accuracy of the suggested method depends upon dif-
ferent factors. One is the relative amount of noise added to
the actual data. The method works well as long as the rel-
ative noise content remain within a specific limit. In fact if
that is not the case then the data mining algorithm will also
have trouble extracting accurate patterns from the data. We
define the term “Signal-to-Noise Ratio” (SNR) to quantify
the relative amount of noise added to actual data to perturb
it.

SNR =
Value of Actual Data

Value of Noise Added to the Data

As the noise added to the actual value increases, the SNR
decreases. Our experiments show that this method predicts
the actual data reasonably well up to a SNR value of 1.0 (i.e.
100% noise). Figure 4 shows the difference in estimation
accuracy as the SNR increases from 1. The dataset used
has square trend in its values. The upper figure shows the
estimation corresponding to 24% noise(mean SNR = 4.2),
and the lower figure shows estimation corresponding to 90%
noise (mean SNR = 1.1).

The second important factor is the inherent noise in the
original dataset before we add noise explicitly for preserving
privacy. The spectral filtering technique will remove the
random noise regardless of its source. Therefore, if the data
set contains some noisy eigenstates it will be removed since
we do not have to identify whether this noise component
originated from the original data set or from the privacy-
preserving data transformation. As a result, sometimes the
filtered data may look quite different from the original data
set.

4.2 Experiments with adjacency matrices of
graphs

This section presents experimental results for filtering out
randomly perturbed graph structured data. First, note that
the additive noise, in itself, is required to be an adjacency
matrix, rather than any ordinary boolean matrix. This is re-
quired since, if this is not the case, (i.e additive noise is any
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Figure 3: Estimation of triangular data using the
spectral filtering technique.
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Figure 4: A higher noise content (low SNR) leads
to less accurate estimation. SNR in upper figure is
1.1, while that for lower figure is 4.2.

boolean matrix without adjacency properties) then distor-
tion in the data becomes obvious and the data miner comes
to know at least to a small degree that the data has been
tampered with. Consider the following example:

Let A be a 4 × 4 adjacency matrix of a graph as shown
in Table 3. Let N be the 4 × 4 noise matrix that has been
added to the adjacency matrix A. Note that in this example
N (Table4) is any boolean matrix and does not necessarily
have the properties of an adjacency matrix. The perturbed
data(that is to be revealed to the data miner) is shown in
the matrix P in Table 5. Obviously this is no longer an
adjacency matrix and the miner immediately realizes that
there has been some tampering with the data and thus may
make attempts to obtain the original data (for example at
the very least he can try and remove the ones from the
diagonal of the perturbed matrix). But this should not be
allowed in practise and hence for avoiding such a scenario in
our experiments we assume that the noise matrix is also an
adjacency matrix.

It must be noted, that in the case of market basket anal-
ysis, we may use the noise as an ordinary boolean matrix
and the signal can be reconstructed in the same manner.

1 2 3 4

1 0 0 1 0
2 0 0 1 0
3 1 1 0 0
4 0 0 0 0

Table 3: The privacy sensitive links in a boolean
adjacency matrix-based representation.

1 2 3 4

1 1 0 0 1
2 0 0 0 1
3 0 0 1 0
4 1 0 0 0

Table 4: A noise matrix which does not have prop-
erties of adjacency matrices.

Another important concern here is in addition of two
boolean matrices. We use the OR function to perform the
addition of the original adjacency matrix and the noise ma-
trix. The rationale behind the same is as follows: If the
noise matrix OR the original matrix has a 1 at a certain po-
sition, then the perturbed data also has a 1. However, the
question arises when both the original and the noise matrix
have 1’s at the same position. Intuitively this means that
there is a link in the original graph as well as in the noise
graph. Hence in the perturbed graph, there should also exist
a link.

There is also a difference in the way the SNR is esti-
mated, considering that this is a boolean adjacency ma-
trix.The SNR, for the special case of adjacency matrices of
graphs is defined as follows:

SNR =
No of similar bits in the org data and pert data

No of dissimilar bits in the org data and pert data

We perform experimentation on artificially generated data
graphs. In these experiments, we assume the existence of
deterministic rules that vertex i has links with, say n other
vertices. For example, suppose that vertex 5 has links with
8 other vertices 6, 7, 8, and 9 and also has links with vertices
1, 2, 3, and 4 and so on. Such artificially generated rules
can be supposed to mimic the real life scenario since vertices
are linked to one another following certain rules. Figures 5,
6, and 7 show the original graph with 100 vertices, the per-
turbed graph and the reconstructed graph respectively. It
is interesting to note that the error in reconstruction re-
duces (Figure 8) considerably as the number of vertices in
the graph increases.

4.3 Experiments with Transaction Data
This section presents results for experiments with trans-

action data. In market basket data, it is common to observe
that, some items are sold together while others are not. For
example in supermarkets, bread and butter are usually sold
together in one transaction.In our experiments, we synthet-
ically generate boolean transaction matrices,containing spe-
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1 2 3 4

1 1 0 1 1
2 0 0 1 1
3 1 1 1 0
4 1 0 0 0

Table 5: The perturbed matrix released to the data
miner.

Figure 5: Original Adjacency Matrix of a graph with
100 vertices.

cific rules determining, which products are sold together.Thus
each transaction matrix has an underlying distribution, which
is of importance. A relatively small transaction matrix, gen-
erated with 10 products and 20 transactions has been used
here for illustration. In Figure 9 the black portion indi-
cates items sold together in a particular transaction and is
based on artificially generated ”trends” in transaction. Since
transaction data can be privacy sensitive, the question is,
can addition of random boolean noise to this transaction ma-
trix, really distort the data or can it be easily reconstructed
? Addition of a boolean noise matrix produces a perturbed
data set, given to the data miner as shown in Figure 10.
The reconstructed matrix, which closes resembles the orig-
inal transaction data is shown is Figure 11. In real life,
transaction data often contains several noise components.
When this happens, our methodology would not be able to
filter out the already incorporated noise and hence the ac-
curacy of reconstruction becomes subject to the amount of
noise initially present in the data.

5. CONCLUSIONS
Preserving privacy in data mining activities is a very im-

portant issue in many applications. Randomization-based
techniques are likely to play an important role in this do-
main. However, this paper illustrates some of the challenges
that these techniques face in preserving the data privacy. It
showed that under certain conditions it is relatively easy to
breach the privacy protection offered by the random pertur-
bation based techniques. It provided extensive experimental
results with different types of data and showed that this is
really a concern that we must address. This paper also pre-
sented results for discrete graph structured data represented

Figure 6: Perturbed Adjacency Matrix.

Figure 7: Reconstructed Adjacency Matrix.

using Boolean Adjacency Matrices and Boolean Transaction
Matrices.

The paper offers a random-matrix based data filtering
technique that may find wider application in developing a
new perspective toward developing better privacy-preserving
data mining algorithms. For example, we may be able to
use this framework to develop algorithms that explicitly
guard against potential compromise on privacy through lin-
ear transformations. The current privacy-preserving data
mining algorithms do not pay adequate attention to this is-
sue. Since the problem mainly originates from the usage
of additive, independent “white” noise for privacy preserva-
tion, we should explore “colored” noise for this application.
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